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Living and Controlled Polymerizations 
 

1.	Introduction	

“Living”	 and	 “controlled”	 chain	 growth	 polymerizations	 (like	 regular	 chain	 growth	
polymerizations)	 start	 with	 the	 initiation	 of	 a	 polymer	 chain	 with	 an	 active	 chain	 end	 and	
propagation	but	 (unlike	 regular	 chain	 growth	polymerizations),	 there	 are	 no	 termination	 or	
transfer	reactions	because	they	are	either	chemically	impossible	(in	“living”	polymerizations)	or	
at	 least	 strongly	 kinetically	 suppressed	 (in	 “controlled”	 polymerizations).	 In	 both	 cases,	 (i)	
steady-state	conditions	hence	do	not	apply.	Moreover,	(ii)	initiation	is	typically	considered	to	be	
fast	 compared	 to	 propagation.	 Therefore,	 the	 boundary	 conditions	 for	 the	 derivation	 of	 the	
polymerization	kinetics	are	entirely	different	from	regular	chain	growth	processes.		

An	important	consequence	is	that	propagation	only	stops	when	there	is	no	more	monomer	left.	
Even	then,	the	chain	ends	remain	active	(“living”),	so	that	the	polymerization	can	be	restarted	at	any	
time	by	adding	more	(or	a	different)	monomer	as	until	they	are	“quenched”,	i.	e.,	terminated	on	purpose	
by	adding	a	quenching	reagent	that	may	also	serve	to	introduce	a	chemical	functional	end	group.	

The	prototypical	example	of	a	living	polymerization	is	the	anionic	polymerization	of	vinyl	monomers.	
Typical	 initiators	 are	 lithium	 organyls	 (carbanions	 with	 lithium	 counterions)	 that	 are	 very	 strong	
nucleophiles	and	attack	the	C=C	bond	of	vinyl	monomers	to	generate	a	carbanionic	chain	end.	Typical	
monomers	 are	 vinyl	monomers	with	 electron-withdrawing	 substituents	 because	 these	 stabilize	 the	
carbanionic	chain	ends.	Anionic	polymerizations	are	quenched	with	electrophiles,	in	the	simplest	case	
with	 a	 proton	 from	 water	 or	 methanol	 added	 as	 a	 quenching	 agent.	 Therefore,	 strictly	 anhydrous	
conditions	and	 the	absence	of	other	protic	 solvents	and	electrophiles	 (like	 carbon	dioxide)	must	be	
ensured	to	avoid	premature	quenching,	the	polymerization	is	carried	out	under	inert	gas	atmosphere,	
and	monomer	as	well	as	solvents	must	be	well	dried	beforehand.	

2.	Kinetics	of	Living	Polymerization	

Since	the	initiation	with	lithium	organyls	is	fast	compared	to	the	propagation,	all	chains	approximately	
begin	to	grow	at	the	same	time.	Assuming	that	all	chains	grow	with	the	same	rate	of	propagation,	Rp,	we	
can	generalize	for	the	consumption	of	monomer	over	time:	

	 𝑅! = −
d[M]
d𝑡

= 𝑘!*P⊝,[M] = 𝑘![I]#[M]	 (1)	
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where	 [P⊝]	 is	 the	 concentration	 of	 all	 active	 chain	 ends,	whose	 amount	 is	 equivalent	 to	 the	 initial	
initiator	 concentration	 [I]0	 if	 initiation	 is	 complete	 and	 effectively	 instantaneous	 compared	 to	 the	
propagation.	The	rate	law	in	Equation	1	is	a	linear,	first-order	differential	equation	for	[M],	which	can	
be	analytically	solved	by	integration,	resulting	in	the	time-dependent	monomer	concentration	function		

	 [M] = [M]#𝑒$%![']")	,	 (2)	

with	[M]0	being	the	initial	monomer	concentration.	The	monomer	concentration	hence	decreases	
exponentially	with	time.	

We	use	again	the	kinetic	chain	length,	𝑣̅,	which	is	given	by	the	ratio	of	monomers	consumed	until	time	t	
and	the	total	number	of	polymer	chains	(which,	in	turn,	is	equal	the	initial	initiator	concentration)		

	 𝑣̅ =
[M]# − [M]

[I]#
=
𝑝[M]#
[I]#

	,	 (3)	

with	𝑝 = ([M]# − [M])/[M]#	being	the	conversion	of	monomers.	Note	that	by	definition,	 𝑣̅ = 0	at	the	
beginning	 of	 the	 reaction	 (when	 [M] = [M]#),	 while	 the	 degree	 of	 polymerization	 equals	 1	 (as	 the	
initiated	species	contains	already	one	repeat	unit).	It	follows	that	the	initial	ratio	of	monomer-to-
initiator	concentration	is	therefore	an	important	control	parameter	for	the	molecular	weight	of	
the	final	polymer.		

3.	Molecular	Weight	Distribution	and	Dispersity	

In	order	to	find	an	expression	for	the	distribution	of	chain	lengths,	one	may	write	explicit	equations	for	
the	rate	of	the	consumption	of	any	chain	length,	starting	with	a	polymer	with	degree	of	polymerization	
of	1	(P*

⊝,	which	is	the	initiated	species),	then	for	the	next	higher	chain	length	(corresponding	to	P+
⊝),	

and	so	on.	Generalization	of	this	procedure	will	 lead	us	to	a	Poisson	distribution	 for	the	molecular	
weight.	

For	this	purpose,	it	will	be	helpful	to	differentiate	the	kinetic	chain	length	with	respect	to	time,	using	the	
expression	for	dM/dt	in	Equation	1.	

	
d𝑣̅
d𝑡

= −
1
[I]#

d[M]
d𝑡

= 𝑘![M]	.	 (4)	

The	consumption	of	P*
⊝	is	simply	given	by	the	rate	of	the	first	propagation	step	

	 −
d*P*

⊝,
d𝑡

= 𝑘!*P*
⊝,[M]	.	 (5)	

Application	of	 the	 chain	 rule	 known	 from	 calculus	 (“chain”	 in	 this	 context	 has	nothing	 to	do	with	 a	
polymer!)	and	insertion	of	the	result	of	Equation	4	lead	to	
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	 d*P*
⊝,

d𝑡
=
d*P*

⊝,
d𝑣̅

d𝑣̅
d𝑡

=
d*P*

⊝,
d𝑣̅

𝑘![M]	.	 (6)	

By	 comparing	 the	 right-hand-sides	 of	Equations	5	 and	6,	 it	 follows	 for	 the	differential	 of	 *P*
⊝,	with	

respect	to	the	kinetic	chain	length:	

	 −
d*P*

⊝,
d𝑣̅

= *P*
⊝,	,	 (7)	

which	can	be	solved	for	the	concentration	of	P*
⊝:	

	 *P*
⊝, = *P*

⊝,#𝑒
$,- = [I]#𝑒$,- 	.	 (8)	

Hence,	P*
⊝	 is	 the	exclusive	species	at	 the	beginning	of	 the	polymerization	(due	 to	 the	 instantaneous	

initiation;	 𝑣̅	 equals	 zero	 in	 this	 case)	 and	 its	 concentration	 decreases	 exponentially	with	 increasing	
kinetic	chain	length.	

This	exercise	can	be	repeated	for	the	next	larger	species,	P+
⊝,	in	which	case	the	rate	expression	for	its	

concentration	change	over	time	is	a	bit	more	complex	because	it	is	formed	from	P*
⊝	and	consumed	to	

form	P.
⊝	at	any	moment.	The	rate	of	the	change	in	*P+

⊝,	over	time	is	therefore	

	 d*P+
⊝,

d𝑡
= 𝑘!*P*

⊝,[M] − 𝑘!*P+
⊝,[M] =

d𝑣̅
d𝑡
:*P*

⊝, − *P+
⊝,;	,	 (9)	

where	we	used	Equation	4	to	establish	the	right-hand-side.	Application	of	the	chain	rule	and	solving	for	
*P+

⊝,	yields	

	 *P+
⊝, = 𝑣̅[I]#𝑒$,- 	,	 (10)	

	Following	the	same	procedure	for	*P.
⊝,,	results	in	

	 *P.
⊝, =

1
2
𝑣̅+[I]#𝑒$,- 	.	 (11)	

This	approach	can	be	expressed	by	a	generalized	form	for	any	x-mer	

	 *P/
⊝, =

1
(𝑥 − 1)!

𝑣̅/$*[I]#𝑒$,- 	.	 (12)	

The	 number	 fraction	 of	 x-mers	 is	 then	 given	 by	 the	 ratio	 of	 their	 own	 concentration	 to	 the	 total	
concentration	of	all	chains	(equal	to	the	initiator	concentration),	and	results	in	a	Poisson	distribution:	

	 𝑃/ =
*P/

⊝,
[I]#

=
𝑣̅/$*𝑒$,-

(𝑥 − 1)!
	 (13)	
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The	 Poisson	 distribution	 is	 a	 very	 narrow	 distribution	 compared	 to	 those	 obtained	 by	 step-
growth	or	regular	chain-growth	polymerizations.	Note	that	the	width	of	this	distribution,	although	
narrow,	increases	with	increasing	degree	of	polymerization.	However,	its	relative	width	normalized	by	
𝑣̅	decreases	steadily.	Prerequisites	for	obtaining	this	narrow	distribution	are	the	equal	reactivity	
of	chain	ends	towards	monomer	throughout	the	entire	polymerization,	the	vry	rapid	initiation	
compared	to	propagation	(so	that	all	chains	approximately	start	to	grow	at	the	same	time	and	
grow	 at	 the	 same	 rate),	 moreover	 an	 irreversible	 propagation	 (depolymerization	 should	 be	
negligible),	and	the	absence	of	statistical	termination	events.	

The	 number	 average	 degree	 of	 polymerization,	𝑋A0,	 can	 accordingly	 be	 calculated	 from	 the	 Poisson	
distribution	by	considering	the	probability	to	find	each	x-mer.	

	 𝑋A0 =B𝑥
/

𝑃/ =B𝑥
/

𝑣̅/$*𝑒$,-

(𝑥 − 1)!
= 𝑒$,-B

𝑥𝑣̅/$*

(𝑥 − 1)!
/

= 𝑒$,-
d
d𝑣̅
B

𝑣̅/

(𝑥 − 1)!
/

	 (14)	

Here,	we	rearranged	the	left-hand-side	of	Equation	21	by	recognizing	that	the	exponential	term	does	
not	 depend	 on	 x	 and	 can	 therefore	 be	 factored	 out	 of	 the	 sum.	Moreover,	𝑥𝑣̅/$*	 can	 be	written	 as	
d(𝑣̅/)/d𝑣̅.	To	get	rid	of	the	factorials,	we	use	the	infinite	series	expansion	of	𝑒,- 	(see	Equation	19	in	the	
Appendix)	and	differentiate	the	resulting	product	according	to	the	product	rule	for	differentiation:	

	 𝑋A0 = 𝑒$,-
d
d𝑣̅
B𝑣̅

𝑣̅/$*

(𝑥 − 1)!
/

= 𝑒$,-
d
d𝑣̅
(𝑣̅𝑒,-) = 𝑒$,-(𝑣̅𝑒,- + 𝑒,-) = 1 + 𝑣̅ ≈

𝑝[M]#
[I]#

	 (15)	

For	sufficiently	large	degrees	of	polymerization,	 it	 follows	that	the	number-average	degree	of	
polymerization	of	the	final	polymer,	𝑿F𝒏 =	𝒗F + 𝟏 ≈ 𝒗F.	Once	the	polymerization	is	complete	and	
has	been	quenched,	the	resulting	number	average	molar	mass	is	equal	to	[𝐌]𝟎/[𝐈]𝟎,	i.	e.,	the	mass	
of	reacted	monomers	to	the	concentration	of	living	chain	ends.	

A	similar	approach	leads	to	an	expression	for	𝑋A3	as	well,	starting	from	its	definition	

	 𝑋A3 =B𝑥
/

𝑤/ =
∑ 𝑥+/ 𝑃/
∑ 𝑥/ 𝑃/

=
∑ 𝑥+/

𝑣̅/$*𝑒$,-
(𝑥 − 1)!
𝑋A0

=
∑ 𝑥+/

𝑣̅/$*𝑒$,-
(𝑥 − 1)!

1 + 𝑣̅
	,	 (16)	

where	 𝑤/	 and	 𝑃/	 (Equation	 13)	 are	 the	 weight	 distribution	 and	 number	 distribution	 function,	
respectively.	Moreover,	we	used	here	the	just	established	result	for	𝑋A0	according	to	Equation	15.	For	
resolving	the	numerator	of	Equation	16,	see	Equation	20	and	21	in	the	Appendix.	We	obtain	

	 𝑋A3 =
1 + 3𝑣̅ + 𝑣̅+

1 + 𝑣̅
	.	 (17)	

The	dispersity	for	sufficiently	large	𝑣̅	can	therefore	be	approximated	as	



EPFL STI IMX LMOM 
MXG 039, Station 12 
CH-1015 Lausanne 

Dr. Daniel Görl 
daniel.gorl@epfl.ch 
lmom.epfl.ch 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 
Suite de votre unité 
 

 

 

5 

School of Engineering 
Institute of Materials 
Laboratory of Macromolecular 
and Organic Materials 

	 Đ =
𝑋A3
𝑋A0

=
1 + 3𝑣̅ + 𝑣̅+

(1 + 𝑣̅)+
=
(1 + 𝑣̅)+ + 𝑣̅
(1 + 𝑣̅)+

= 1 +
𝑣̅

(1 + 𝑣̅)+
≈ 1 +

1
𝑣̅
	.	 (18)	

	

The	dispersity	of	a	polymer	prepared	by	living	chain	growth	polymerization	will	hence	be	close	
to	1.	Other	controlled	polymerization	methods	exist	as	well	to	produce	“monodisperse”	polymers.	As	
long	as	the	initiation	is	rapid	compared	to	propagation,	the	individual	propagation	steps	are	irreversible,	
and	the	absence	of	a	statistical	termination	event	is	ensured,	the	above	considerations	apply.	
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Appendix:	

	 𝑒! =#
𝑦"

𝑥!
"

=#
𝑦"#$

(𝑥 − 1)!
"

	 (19)	

For	 simplifying	 the	 numerator	 in	 Equation	 16,	we	 use	𝑥𝑣̅/$* = d(𝑣̅/)/d𝑣̅	 until	 Equation	 19	 can	 be	
applied	in	the	last	step:	

	

B𝑥+
/

𝑣̅/$*𝑒$,-

(𝑥 − 1)!
= 𝑒$,-B𝑥+

/

𝑣̅/$*

(𝑥 − 1)!
= 𝑒$,-B𝑥

/

𝑥𝑣̅/$*

(𝑥 − 1)!
= 𝑒$,-

d
d𝑣̅
B𝑥
/

𝑣̅/

(𝑥 − 1)!

= 𝑒$,-
d
d𝑣̅
𝑣̅B

𝑥𝑣̅/$*

(𝑥 − 1)!
/

= 𝑒$,-
d
d𝑣̅
𝑣̅
d
d𝑣̅
B

𝑣̅/

(𝑥 − 1)!
/

= 𝑒$,-
d
d𝑣̅
𝑣̅
d
d𝑣̅
𝑣̅B

𝑣̅/$*

(𝑥 − 1)!
/

= 𝑒$,-
d
d𝑣̅
𝑣̅
d
d𝑣̅
𝑣̅𝑒,- 	

(20)	

It	remains	to	solve	the	derivates	of	 the	right-hand-side	of	Equation	20	according	to	the	product	rule	
(known	from	calculus):	

	 𝑒$,-
d
d𝑣̅
𝑣̅
d
d𝑣̅
{𝑣̅𝑒,-} = 𝑒$,-

d
d𝑣̅
𝑣̅{𝑒,- + 𝑣̅𝑒,-} = 𝑒$,-

d
d𝑣̅
{𝑣̅𝑒,- + 𝑣̅+𝑒,-}

= 𝑒$,-{𝑒,- + 𝑣̅𝑒,- + 2𝑣̅𝑒,- + 𝑣̅+𝑒,-} = 1 + 3𝑣̅ + 𝑣̅+	
(21)	

	


